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Abstract—This review paper presents a hybrid point of
view that combines computational electromagnetics
(CEM) and transformation electromagnetics/optics
(TEM). The main purpose is to employ the salutary
features of TEM to increase the effectiveness of finite
methods (such as finite element method or finite
difference methods) for solving electromagnetic
boundary value problems. Synergies arising from the
marriage of CEM and TEM enable us to overcome some
of the difficulties, such as challenging meshing issues and
high levels of computational burden, associated with the
finite methods. OQOur previous studies basically
concentrated on three types of problems: (i) modeling
large-scale or multi-scale electromagnetic scattering
problems; (ii) modeling curved geometries that do not
conform to a Cartesian grid especially in finite difference
methods; and (iii) modeling stochastic electromagnetic
problems having significant uncertainty. The underlying
idea is to insert transformation media into computational
domain in order to alleviate certain difficulties associated
with some of the meshing requirements dictated by the
problem geometry. Our strategy is to create a virtual
“equivalent” problem, which mimics the original
problem, and which enables us to develop efficient and
simple-to-use computer-aided simulation tools to solve it.
This paper reviews some of our previously-published
approaches based on the above strategy, and includes a
discussion of some of the related issues.

Index Terms—Transformation electromagnetics/optics,
computational electromagnetics, anisotropic
metamaterials, transformation medium, coordinate
transformation, finite element method (FEM), finite
difference time domain method (FDTD), Monte Carlo,
multi-scale, stochastic, rough surface scattering.

I. INTRODUCTION

Computational ~ Electromagnetics (CEM) is an
interdisciplinary area which combines applied mathematics,
physics and computational science, and which has become
an inevitable part of high performance engineering analysis
and design. Although the importance of CEM might not be
evident to the general public, it has transformed our lives
during the last fifty years because almost every electrical
device or system in use today is analyzed, designed or tested
through the use of CEM simulation tools. Basically, the

CEM involves the process of modeling the interaction of
electromagnetic fields with physical objects and environment
through approximations to Maxwell’s equations. Although
Maxwell’s equations are the starting points for predicting
electromagnetic phenomena, their analytical solutions are
available only for a few simple canonical geometries. The
invention of computers in 1940s and the fast advances
thereafter in computer technology triggered the development
of various computational techniques to solve Maxwell’s
equations for more general real-world geometries. Today
there are many CEM tools that have been developed for the
simulation of complex problems.

In spite of great progress achieved in the past, CEM is an
evolving research area and there are still challenges that
require elegant and sophisticated approaches [1] for meeting
them. One of the major issues associated with the CEM
techniques is the demand for intensive computational
resources, such as computation time and memory, or mesh
refinement to improve accuracy, when dealing with certain
class of problems. For example, in multi-scale problems
where a significant volume of empty space or large number
of unknowns must be used to model geometries including
both electrically large and small features in a medium,
traditional computational techniques require resources
beyond what is available today. In addition, mesh
refinements or subgridding to handle fine features or curved
boundaries often require special treatments which, in turn,
place heavy burden on the available computational resources.
Another example of CEM challenge is encountered in Monte
Carlo simulation of stochastic problems, such as the one
associated with rough surface scattering, which requires
repeated solutions of the problem for a set of random
parameters, and which demands a very heavy computational
cost. This has led the CEM researchers of today to develop
powerful techniques which leverage the existing numerical
methods and embellish them in a way that makes it possible
for them to handle complex problems that are highly
computer-intensive.

Above-mentioned challenges have long been the primary
concerns of researches working in the CEM field. The
approach for reshaping objects by using anisotropic
metamaterials in 2007 [2]-[3], which the present authors
developed just after the invisibility cloaking concept was
introduced in 2006 [4]-[5], inspired us to use the principles
of transformation electromagnetics (TEM) to alleviate
certain difficulties that arise in CEM methods. TEM provides
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an intuitive and systematic way to design application-
oriented transformation media (or metamaterials) to adjust
the behavior of electromagnetic waves in a desired manner.
It employs the principle of form-invariance of Maxwell’s
equations under coordinate transformations. When the spatial
domain of a medium is modified by employing a coordinate
transformation, this medium equivalently turns into an
anisotropic medium in which Maxwell’s equations retain the
same mathematical form. The constitutive parameters of the
anisotropic medium are determined from the Jacobian of the
coordinate transformation. To put it another way, a type of
duality is achieved between the modified coordinate system
of the problem and the material parameters of the associated
medium. Here, the most crucial issue is how the coordinate
transformation is defined to create a simpler equivalent
problem that mimics the field behavior of the intended
original problem. Once the coordinate transformation has
been defined, the relevant material parameters can be
computed by following a straightforward procedure.
Although the invisibility cloaking device led to the
concept of transformation electromagnetics/optics in the
present form, this concept was originally introduced by
Bateman at the very beginning of the 20th century [6]. One
well-known application of this approach is the design of
perfectly matched layer (PML), which is an artificial
medium used for mesh truncation in finite methods. The
approach is known as coordinate stretching in PML
nomenclature, and is indeed an application of TEM with
complex mapping functions [7]-[11]. Especially, the locally-
conformal method in [10]-[11] proposes the use of a
complex form of coordinate transformation, which easily
conforms to arbitrarily-shaped curved geometries. In
addition, the TEM concept has been examined in some
studies within the context of finite methods in the past [12]-
[14]. However, the invisibility cloak, which is perhaps the
most intriguing optical device, initiated the widespread use
of TEM for the systematic design of various optical and
electromagnetic structures. Just after the rebirth of TEM in
the context of the invisibility cloaking approach, we
proposed the reshaping approach through real mapping
functions, which transforms the geometry of an object into a
new one of different shape [4]-[S]. Almost concurrently,
Teixeira also proposed an approach for reshaping of objects
in [15]. These papers in [4]-[5] and [15] are indeed the first
studies extending the concept of cloaking to the design of
reshaped objects to control their electromagnetic responses.
Following the above, various other applications of TEM
have also been proposed in the literature [16]-[41]. In spite
of widespread use of TEM, it is not uncommon to run into
situations where the resulting TEM-designed device is
difficult to realize in practice because of difficulty in
acquiring real or artificial materials that exhibit the spatial
variations specified by the TEM algorithm. However, some
promising realizations of such materials have been proposed
in [42]-[45], and future developments in material technology
may help us further in our attempt to address this problem.
At this point, it is worthwhile to note that our objective in
this paper is to improve CEM techniques, and the physical
realization of metamaterials is beyond the scope of this work.

This was also the reason why we named such materials as
software metamaterials in one of our previous works [38].

The principal concept which wunderlies all of the
approaches presented in this paper is to modify the
computational domain, and to place suitable transformation
media inside the modified domain to devise simple and
efficient computer-aided simulation tools. Three types of
problems are considered: (i) modeling large-scale or multi-
scale electromagnetic scattering problems [35], [36], [38]
(Section III); (ii) modeling curved geometries that do not
conform to a Cartesian grid especially in finite difference
methods [37] (Section IV); and, (iii) modeling stochastic
electromagnetic problems having significant uncertainty
[39]-[41] (Section V). In each section below, the
corresponding problem is explained in detail and illustrative
numerical examples are included.

It is useful to note that the design of the transformation
medium depends on the nature of the problem. Therefore,
this paper aims to provide both the basic principles and
intuitive understanding of how to incorporate transformation
media into CEM techniques. Although the way of defining
the coordinate transformation might differ from problem to
problem, the computation of the material parameters follows
the same procedure and is based on the form-invariance
property of Maxwell’s equations. Hence, we first present the
framework of transformation electromagnetics under a
general coordinate transformation in Section II. Finally,
some discussions and questions pertaining to the presented
approach are included in Section VI.

Throughout the paper, the suppressed time dependence of

the form exp(jwt) is assumed.

II. OVERVIEW OF TRANSFORMATION ELECTROMAGNETICS

In this section, the general procedure of determining the
material parameters of the transformation medium is
explained. A  general coordinate  transformation,
r— Tt = T(r), transforms or moves each point P in the
original space € to another point P in the transformed space
Q. Here, r and T are the position vectors of the points P
and P in the original and transformed coordinate systems,
respectively. The transformation converts the original
medium to an anisotropic medium whose constitutive
parameters are obtained via the Jacobian of the
transformation. The transformed fields satisfy the original
form of Maxwell’s equations in the anisotropic medium;
hence this behavior is also known as the form-invariance
property of Maxwell’s equations.

If the original medium before the transformation is an
isotropic medium with parameters (&,p ), then the
permittivity and permeability tensors of the anisotropic
transformation medium can be expressed as [46]

F =¢eA, o=ph, 1)

where

= s =T ) = 1

A= 63(J I, 2)
where 6? denotes the determinant of the Jacobian tensor that

is defined in Cartesian coordinates as follows:
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where 0, = 5/83;', Gy = 3/8y and 9, = 6/8z.

If we consider the case of electromagnetic scattering from
cylindrical objects, and assume that the wave propagation is
invariant along the infinite 2 -axis (i.e., no 2 -variation),
then the z-dependent off-diagonal terms of (3) become zero

(e, 02=049=0,2= 8y2 =0), as well as the z-
dependent diagonal term becomes unity 0,Z = 1. When the
original medium is an anisotropic medium with parameters
(2 ,1"), then the parameters are computed by using

F=5(71) -7

) e

—_— = 1‘ = =-
ﬁzéj(J‘l) -;/-(Jl). (5)
The Jacobian tensor can be determined either analytically
or numerically. In the analytical approach, analytical
functions that describe the points within the medium are

defined. Consider the general form of coordinate
transformation in the following:
= f(zy) G=g(zy), Z=2z, (©

where f and g are functions defining the coordinate
transformation. The tensor A in (2) is computed by

Ay Ay O n 0
= A
A=A, A 0 |= ;l 0 |, @)

22

0 0 Ag| [0 0 Ay,
where
A % 19 2
1= 7[‘]22'*“]12]» ®)
T3
5
A=Ay = _?[J11J12 + J21J22]’ )
g
% 1o 2
Ayy :_[Jfl "‘le]’ (10)
b3r 3
Ay = 6. (i

(%]Ti is the determinant of JT - J, and I refers to the ij -

th component of the Jacobian tensor.

In the numerical approach for finite element method
(FEM), the points are found by using simple search
techniques, and then, the Jacobian tensor is numerically
computed by employing scalar basis functions. Advantages
of the numerical implementation are twofold: It can be used
for arbitrarily-shaped geometries and it can easily be
incorporated into FEM. For example, if the computational
domain is discretized by triangular elements with three
nodes, each element is mapped to a master element in local

coordinates (5,77). Based on isoparametric mapping, the

coordinate variations in both original and transformed
domain are obtained as follows:

3 3

IZZ%M(&”) ’ y:Zy,;N,;(E,n), (12)
i=1 i=1
5 3

j:ZEiNi@JI)’ 17=Zl7iNi(fs77)’ (13)
i=1 i=1

where (=, ,y;) and (7, ,y,;) are the original and transformed
nodal coordinates in each element, respectively. Here,
N, ( 5,7]) is the scalar basis function for the i-th node in
local coordinates and is given by
N, =1-&—m, N, =¢, N, =n. (14)
By using the chain rule, the entries of the Jacobian tensor
are expressed as follows:

- -1 7. -
Ji| 9, 2% YU BT 15)
Ji 0,7t Ty =T Y3 — Y By — 3|

n ~ -1 1. -
I | 0,4 T % YU (% (16)
Iy 9,y T3 =T Ys =W U = |

which depend on the nodal coordinates that are both z - and
y -dependent.

In order to show the form invariance property of
Maxwell’s equations, let us express the fields in a source-
free medium with constitutive parameters (g, ;¢ ) as follows:

V xE(f) = —jwpH(F), (17a)
V x H(f) = jweB(T), (17b)

where E(F) and H(%) are the transformed fields (i.e.,

)
mapped versions of E(r) and H(r) to the transformed

space, respectively), and V= [j'l]T -V is the del operator
in transformed space. Maxwell’s equations in (17) are
equivalent to those in the original coordinates, and they
satisfy:

V x E(r) = —jwii - I:I(r)

v xﬁ(r) = jw?-f)(r).

(18a)
(18b)

The fields within the transformed space are also
transformed as follows:

E(r)=7" E(f), (19a)

H(r)=1J" H(F). (19b)

Eqn. (19) illustrates the principle of field equivalence. The
original fields in transformed coordinates [i.e., E(i)] and

the transformed fields in the original coordinates [i.e., E (r)]

are inter-related, and hence, that the original desired fields
can be recovered from the fields within the transformation
medium. For TM, (transverse magnetic) case where

E(r) = dzE:(Ly), (19a) reduces to Ez(i;ﬂ) = Ez(m,y).
By manipulating Maxwell’s equations, the electric field

satisfies the following vector wave equation in transformed
and original coordinates, respectively, as follows:
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VxVxE(f)-kE(F)=0, (20)

Vx{/zrl-VXE(r)}—k2/=x-E(r):o, @1)

where £ is the wave number of the original medium. For
TM, case, the vector wave equations reduce to scalar
Helmholtz equations in transformed and original coordinates,
respectively, as follows:

V2E, + k*E, = 0, (22)
V- (AVE, )+ K8AuE, =0, (23)
where 6, is the determinant of /=\ Within the

t ¢
transformation medium, (23) can be solved by using the
tensors, or (22) can be solved without tensors by just
replacing the coordinates with the transformed coordinates.

III. MODELING LARGE-SCALE OR MULTI-SCALE
ELECTROMAGNETIC SCATTERING PROBLEMS

Efficient and accurate simulations of electromagnetic
boundary value problems that have multi-scale features is
still a challenging problem. Multi-scale electromagnetics
involves electrically large and small structures that are
simultaneously present in a medium where a significant
volume of empty space or mesh refinement must be used.
For example, the following applications are of multi-scale
nature: small antennas mounted on large platforms; feed
regions of the antennas; fine-featured interconnect structures
in integrated circuits, and sensors transplanted within the
human body. Such problems may heavily burden the
available computational resources, because they may require
a large number of unknowns to model them accurately if
traditional computational techniques are employed.

Application 1: Within the context of TEM, we first
proposed the domain compression approach in [35]. The
main goal is to design a transformation medium to compress
the excessive white space in such a way that electromagnetic
waves are guided inside the medium without changing the
wave behavior in the rest of the domain. This technique can
be used in a certain class of problems, especially having an
electrically-large non-convex object or multiple objects
positioned arbitrarily in space. In such problems, excessive
white-space (i.e., free-space) must be used inside the
computational domain, which introduces a large number of
unknowns. This is due to the fact that the computational
domain must necessarily be convex to properly account for
the mutual couplings among different parts of the geometry.
For example, to model an L-shaped object, a rectangular
domain should be used, or the computational domain should
be defined with respect to the convex hull [i.e., the smallest
convex set that encloses the object(s)]. Hence, the
computational domain must include excessive free-space
covering the inner part of the convex hull. Another reason of
why the computational domain must be convex is that
absorbers (such as perfectly matched layer PML) truncating
the computational domain must be designed over a convex
domain in order to annihilate the outgoing waves.

o Qe new = Qs U QpmL Y Qamm
= . ’ . Q= ﬁFs u ﬁPML U Qamm
— ."'.‘ “".. T: Qamm — ﬁ

PEC (empty) |
Qrs

QpmL

Fig. 1. Domain compression approach for L-shaped object. (Reprinted from
[35], Copyright 2013, with permission from Elsevier)

Consequently, the convexity property of the computational
domain is mandatory in finite methods and this, in turn, often
introduces a large number of unnecessary unknowns in the
free-space region. The proposed technique compresses such
white space by using a transformation medium, which
eliminates the unknowns in this white space and thus results
in a reduction of the total number of unknowns.

Without loss of generality, the domain compression
technique is shown in Fig. 1, where an L-shaped object is
illuminated by a plane-wave. The original computational

(e, Q =Q U, VR U, U,

where the subscripts ‘FS’ and ‘PML’ denote ‘free space’ and
‘perfectly matched layer’, respectively) is trapezoidal in
shape, considering the convex-hull of the object, to minimize
the number of unknowns as much as possible. The
computational domain may also be of rectangular shape to be
able to use certain numerical schemes based on Cartesian
grids. In the proposed approach, the transformation medium
layer or anisotropic metamaterial medium (Qaym) 1S
constructed in such a way that the excessive white space
region is compressed. Computational domain of the
equivalent problem becomes Q =Q U U,

domain

c, org

as shown in Fig. 1. In this configuration, there may be a
small free-space gap between the object and the boundary of
the layer (9Q).

The transformation layer is designed by mapping each
point P inside the layer to P inside the transformed region
Q=Q,,uUQ,, UQ,,,, . This mapping is defined as a

coordinate transformation T :Q — O as follows:

AMM
P =—"f2 _ff)" (r—%,)+f, (24)
I -5

where r=(x,y,z) and ¥ =(%,75,Z) are the position vectors
of the points P and P in the original and transformed
coordinate systems, respectively, and |||| represents the

Euclidean norm. Moreover, T,, I, and T, are the position

vectors of Py, P, and P, which are determined on 09, 0,
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A

and 0Q, respectively, through the unit vector a, . Through

this coordinate transformation, the region Q is compressed
into the layer Qauy in the direction of the unit vector &, .

The direction of the unit vector dp can be chosen in the

direction of the parallel lines and/or in the direction of lines
intersecting at a pre-defined point outside the compressed
domain. In principle, the unit vector should be chosen in
such a way that the domain is compressed in a symmetrical
manner as much as possible. This is needed to avoid non-
uniform compression (i.e., non-uniform density of
transformed points) inside the layer, and thus, to avoid large
variances in the entries of the constitutive tensors.

In this configuration, the PML region should also be
compressed into a region inside the layer. This is necessary
to avoid artificial reflections from the outer boundary 0Q;.
The PML action can be included by using the locally-
conformal PML method [10]-[11], which utilizes a special
type of complex coordinate stretching. The locally-
conformal PML is designed in complex space by just
replacing the real coordinates with their complex
counterparts (i.e., simply by adding suitable imaginary parts
to the real coordinates). In this way, complex-valued
permittivity and permeability tensors (Zpy ,Hpy ) are
obtained inside the PML layer, and the constitutive
parameters of the transformation medium whose transformed
points fall into the PML region are determined by (4) and
(5). In other words, the principles of transformation
electromagnetics are applied twice, in a consecutive manner.

The problem in Fig. 1 has been simulated by using the
FEM, and the results are presented in Fig. 2. A plane wave is
incident on a thin L-shaped object, whose thickness is A/20
and edge-length is 8A, where A = 1m is the free-space
wavelength, and the angle of incidence is 45° with respect to
the x-axis. The element size is set to A/20. The thickness of
the transformation layer is 1A. Fig. 2(b) shows the
implementation of the coordinate transformation, carried out
by using unit vectors directed along parallel lines with an
angle of 45°. The computation times for the equivalent and
original problems are 42 sec and 215 sec, respectively. To
measure the performance of the proposed method, the mean
square percentage difference is defined as

Err:ZE“—E“Z/ZE“z and E°
QI’S QPS

electric fields calculated in the equivalent and original
problems, respectively. In addition, the reduction in the
number of unknowns is measured by using the following
=(N°—=N°)/N°, where N* and N° are the
number of unknowns employed in the equivalent and
original problems, respectively. In Table I, we tabulate the
error values by varying the thickness of the transformation
layer (damm), and the element size (Ah) used in FEM. We
also tabulate the N,.q.c values in this table. We conclude that
the proposed method is fast and reliable even with the
moderate element sizes, and provides a considerable
reduction in the number of unknowns, especially at high
frequencies.

, where E° are the

expression: N

reduce

TABLE I
ERROR VALUES AND REDUCTION IN UNKNOWNS FOR L-SHAPED OBJECT
(REPRINTED FROM [35], COPYRIGHT 2013, WITH PERMISSION FROM

ELSEVIER)
ERR (%)
davm (V) Ah =A/20 Ah = A/40 Nreduce (%)
0.5 0.0713 0.0306 62
0.4 0.0988 0.0942 65
0.3 0.1700 0.1310 68
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Fig. 2. Finite element simulation for L-shaped object: (a) Electric field map
in original problem; (b) electric field map in equivalent problem with
transformation medium; (c) bistatic radar cross-section (RCS) profile.
(Reprinted from [35], Copyright 2013, with permission from Elsevier)

Application 2: Next we turn to various approaches for
devising simple and efficient computer-aided simulation
schemes, for multi-scale problems [36], [38]. While solving
such problems with conventional finite methods, the mesh
must be refined around objects with electrically-small
features, in order to be able to accurately capture the field
variations in their vicinity if larger-scale or coarser
discretizations are employed. Hence, the main bottleneck in
multi-scale problems is the high local density of number of
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unknowns in modeling small-scale details within electrically
large domains. The main advantage of the proposed
approach is to eliminate the need for mesh refinement around
the small-scale features, enabling one to employ a uniform
and easy-to-generate mesh throughout.

We next consider the scattering problem involving six
electrically-small circular objects, as shown in Fig. 3. Fig.
3(a) shows the standard mesh with refinement around the
objects, assuming that the objects are perfectly conducting,
though they can be dielectric. Fig. 3(b) shows an equivalent
problem designed by inserting the transformation medium (
Q,,) around each object. The shape of the transformation

medium is arbitrary, as long as its shape is convex. It may
either be conformal to the object or may be adapted to the
rectangular mesh as shown in this figure. The region
occupied between the boundary of the object and the inner
boundary of the layer is discarded. In designing the layer,

each point P inside Q,, is mapped to P inside the
transformed region Q:QUQM, by using the following
coordinate transformation T:Q,, — Q
. r, T,
roF=T(r)=—"—5(r-r,)+r,
r, -1,

(25)

where r,, 1, and r, are the position vectors of the points P,,

Py, and P,, through the unit vector a4 originating from a point
inside the innermost domain (such as the center-of-mass
point) in the direction of the point P within the layer. Note
that if the object is perfectly conducting, Q does not include
the inner part of the object. This technique can also be
extended to dielectric objects in a similar manner. In this
case, I, is set to zero and Q includes the inner region.

When the transformed point falls inside the dielectric object,
the material parameters are computed with respect to the
dielectric constant of the object. Also note that the
transformation ensures that the transformed and the original
coordinates are continuous along the outer boundary of the

transformation medium (.e., if r=r, then
r=F=r, ondQ, ).

An equivalent problem, which has a uniform mesh and
fewer unknowns, is created by using the proposed
transformation without resorting to mesh refinement around
the object. The term “equivalence” here means that the fields
within the free-space region—but outside the transformation
media—are identical in both the original and equivalent
problems, and that the fields inside the layer are related to
the original near-fields in the vicinity of the object due to the
principle of field equivalence expressed in (19). The
coordinate transformation basically confines the fields
around the object to the transformation medium. In other
words, the transformation medium creates a virtual reality in
the sense that it forces the fields inside the layer to mimic the
fields within . In this manner, the boundary of the small
object is moved to the inner boundary of the layer. Thus, the
boundary condition which must be imposed on the boundary
of the conducting object, e.g., tangential component of the
total field must be zero on the boundary, must be enforced on
the inner boundary of the layer in the equivalent problem. It

S Smal
" object

;,y/‘

c/ Ps
Pc

Oz Qua

Oz

Sow G

(b)
Fig. 3. Scattering from six electrically-small circular objects: (a) Original

problem with refined mesh; (b) equivalent problem with separate
transformation media and uniform mesh. (Reprinted from [38], Copyright
2013, with permission from Elsevier)

is also interesting to note that the same mesh can be used in
the equivalent problem for an object of arbitrary shape by
simply changing the constitutive parameters of the layer
according to the geometry of the object.

The simulation results of the problem, derived via the
FEM, are illustrated in Fig. 4. A plane wave is incident from
an angle of 45° with respect to the x-axis. The radius of each
circular object is A/20 (A = 1 m). The element size in the
equivalent problem is approximately A/40, whereas the
element size in the original problem is gradually decreased
around the object. Computational analysis of the simulations
is tabulated in Table II. The results show good agreement,
demonstrating the validity of the proposed approach. Small
error value might be due to numerical approximations in
FEM modeling, and spatial variations in the FEM mesh due
to transformed coordinates.

Application 3: Another multi-scale problem involves an
object which is coated with an electrically thin dielectric
layer. In the conventional approach, the mesh inside the
dielectric layer must be refined for good numerical precision
if the thickness of the layer is thin. In the proposed approach,
illustrated in Fig. 5, an imaginary or hypothetical region is
designed in the inner part of the object. Assuming that the
object is conducting, the transformation medium is the union
of the imaginary and dielectric regions. The white inner
region surrounded by the imaginary region is discarded from
the mesh, and a uniform mesh is created within the
transformation medium. The transformation medium is
designed by mapping each point P inside Q, =QuUQ, to
P inside the transformed region Q =Q 4 » by using the same

coordinate transformation as in (25). Note that although the
same expression is used, the original and transformed
domains differ in each technique. This transformation
expands the fields within the thin layer to the transformation
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TABLE IT
COMPUTATIONAL ANALYSIS OF THE PROBLEM IN FIGS. 3-4.
(REPRINTED FROM [38], COPYRIGHT 2013, WITH PERMISSION FROM

ELSEVIER)

Original Equivalent

Problem Problem
Time for mesh generation phase (sec) 88 76
Time for FEM matrix formation and
solution phases (sec) 594 455
Total time (sec) 688 531
Matrix size 27887 25391
Matrix condition number 5.1x10* 7.4x10*
Mean square percentage difference (Err) 0.1951 %

=3
c
(a) =
>
=
c
b £
>
Bistatic RCS Profile
15 iginal Problem 4
—— Equivalent problem
o
2
<
) »
Q
¥ -

0 45 20 135 180 225 270 315 360
¢ (degree)

Fig. 4. Finite element simulation of scattering from six electrically-small
circular objects: (a) Electric field map in original problem; (b) electric field
map in equivalent problem with transformation media; (c) bistatic RCS
profile. (Reprinted from [38], Copyright 2013, with permission from
Elsevier)

medium. The action of the transformation medium is the
field expansion, not the field confinement or compression. In
this approach, the transformed point always lies inside the
dielectric region, and hence, the parameters of the
transformation medium are obtained accordingly. Common
to the previous approaches, different problems (such as
multiple layers with different thicknesses and dielectric
constants) can be simulated by employing a single mesh, and
by changing only the material parameters.

Object

Generated

(real) mesh Transformed

(virtual) mesh

Fig. 5. Scattering from an object coated by a dielectric layer: (a) Proposed
approach; (b) real physical mesh used in the simulation; (c) virtual mesh
after the transformation. (Reprinted from [38], Copyright 2013, with
permission from Elsevier)
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Fig. 6. Finite element simulation of scattering from a circular object coated
by a dielectric layer: (a) Electric field map in original problem; (b) electric
field map in equivalent problem; (c) electric field map in equivalent problem
after transforming the field values by using the field equivalence; (d) RCS
profiles. (In the field maps, thicknesses of the dielectric and transformation
layers are A/20 and 0.5\, respectively. In the RCS profile, they are A/200
and 0.1A, respectively.) (Reprinted from [38]. Copyright 2013, with
permission from Elsevier)
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The results of numerical simulations of the problem under
consideration are presented in Fig. 6. The diameter of the
circular object is 2A. Note that Fig. 6(c) shows the field map
that is plotted after transforming the field values by using the
field equivalence in (19), which is the same as the field map
in Fig. 6(a). This shows that desired field values in the
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original problem can be recovered from the field distribution
within the transformation medium of the equivalent problem.

Alternatively, thin dielectric coatings can be handled by
using an approach similar to the one employed in
Application 2 above. In this approach, the transformation
medium can be designed outside of the object, and when the
transformed point falls inside the dielectric layer, material
parameters can be derived accordingly. In addition to the
above applications, similar techniques can be designed, for
example, for objects having electrically thin or sharp
features, or objects separated by electrically-short distances.
The readers are referred to [36] and [38] for further details
on these alternate approaches.

IV. ELIMINATION OF STAIRCASE APPROXIMATION OF
CURVED GEOMETRIES IN CARTESIAN GRIDS

Finite difference methods belong to the class of grid-based
numerical modeling methods, and the finite difference time
domain (FDTD) method is a widely-used technique, which
uses a leap-frog scheme for marching on time where the
electric and magnetic fields are staggered on a Cartesian
coordinate grid. One of the main drawbacks of this method is
the difficulty encountered when modeling curved geometries
that do not conform to a Cartesian grid. It is common to
utilize a staircase approximation of the curved surface, but an
accurate solution can only be obtained by using very fine
grids, and consequently very small time step. This obviously
increases the computational load. There are some techniques
reported in the literature, such as locally-conformal FDTD or
use of nonorthogonal grids, to overcome this difficulty. In
[37], we proposed a staircase-free approach by employing
the principles of transformation electromagnetics. The main
idea is to place a transformation medium that is adapted to
the Cartesian grid and around the curved boundary of the
object; and to discard the region between the curved
boundary and the inner boundary of the transformation
medium. The material parameters of the transform medium
are obtained by using a coordinate transformation that maps
the region inside the layer to the region between the curved
boundary and the outer boundary of the layer. In this manner,
curved boundaries can be modeled with simple Cartesian
grids and without staircase errors.

Let us consider the geometry in Fig. 7. The upper slanted
part of the object is not conformal to the Cartesian grid, and
its staircase approximation causes errors because the
conventional FDTD cannot well capture the field variations
across this boundary. In the proposed approach, an
equivalent problem is designed by placing a transformation
medium (shaded by the yellow color) around the curved
boundary. The region occupied between the object’s
boundary and the inner boundary of the layer is removed.

Each point P inside €, is mapped to P inside the

transformed region Q=QuUQ,, by using the following

coordinate transformation T:Q, — Q

y=lexl
e

ror=T(r (r r,)+r

¢ .

(26)

A y
a, 1
\e b
- a P!
(g, 1) Pa a
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b| -a 6 a [
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Fig. 7. Coordinate transformation technique for staircase-free FDTD
method.

Note that, due to the nature of the transformation,
coordinates are transformed only in the yellow region of the
transformation medium. In other regions (shaded by white)
surrounding the object, the transformation yields original
coordinates (i.e.,, if r,=r,, then r=r ,VreQ,). In
addition, the coordinates are continuous along the outer

boundary of the transformation medium (i.e., if r=r,, then

r=f=r, ondQ,). These conditions are indeed necessary
to satisfy the field continuity.

It is worthwhile to mention that since we are concerned
with the time domain method in this section, the field
expressions in Sec. II are expressed in terms of both space
and time. In addition, the implementation of the FDTD
equations in an anisotropic medium requires a special
treatment, and the readers are referred to [37] for details.

To compare the performances of the FDTD
implementations in the equivalent and original problem
geometries, several numerical experiments are performed.
The geometry in Fig. 7 is simulated and the field maps at
different time instants are presented in Fig. 8. The excitation
is driven with a sine wave at 3 GHz. The original problem is
staircased on a “fine” Cartesian grid to reduce the error to a
certain value by adjusting the grid size sufficiently small
(grid size is A/40). In the equivalent problem, the edge
lengths of the inner and outer layers of the transformation
medium are set to 1A and 2A, respectively. The error values
comparing the original and equivalent problems are listed in
Table II1.

V. MODELING STOCHASTIC ELECTROMAGNETIC PROBLEMS

Smooth surfaces do not really exist in the physical world;
and hence, it is vital to analyze the extent to which
electromagnetic waves are affected by surface roughness.
There are three possible cases: (i) Scattering from a rough
sea or ground surface without any other object or
inhomogeneity; (ii) scattering from a composite problem
where smooth objects are located on/above random rough
sea or ground surface (i.e., perfectly smooth objects are in a
random medium); and (iii) scattering from an object with a
rough surface in a deterministic or random medium. Due to
randomness, the analysis of such problems requires some
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TABLE II1
ERROR VALUES FOR THE PROBLEM IN FIGS. 7-8.
Err
Time step n=800 4.68e-5
Time step n=1000 541e4
Time step n=1200 7.92e-4

Original problem Equivalent problem

Ez at n=800 Ez at n=800
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Fig. 8. FDTD field maps of original and equivalem problems at different
time instants for the geometry in Fig. 7.

statistical or stochastic techniques. Monte Carlo is a
commonly used technique that is utilized to generate a set of
random rough surfaces from a given probability distribution,
and then repeatedly solving the problem corresponding to
each surface. The results are collected and formed as a
random process (or random field since the domain of the
underlying parameter is space rather than time). The random
field is analyzed to determine the average behavior of the
problem (such as mean, variance, etc). One challenging issue
while realizing the Monte Carlo method is large amount of
computational resources required to perform the repeated
solutions for each surface. For example, if a finite method
(such as finite element method or finite difference method) is
to be used to solve the problem, the mesh is generated anew
for each surface and the problem is solved afterwards.
Eventually, the computation time increases dramatically
especially in electrically large problems.

In [39], we applied the principles of transformation
electromagnetics to efficiently solve the rough-surface
scattering problems in cases (i) and (ii) above. The main
steps of the proposed approach are as follows: (i) a single
and uniform mesh is generated for the surface assuming that
it is smooth; (ii) the transformation medium is placed on the
smooth surface; and (iii) the material parameters of the
medium are computed by using the Jacobian of a specially-
defined coordinate transformation that maps the points
within the transformation medium to the actual space around
the rough surface. In this manner, a "virtual" equivalent
problem working with a smooth surface and an anisotropic
medium is created, which mimics the behavior of the original
problem working with the rough surface. Therefore, a type of

E inc

¢ inc

KII’ML

Qs

(b)

()

AT

Fig. 9: Rough surface scattering problem: (a) Original scattering problem;
(b) equivalent scattering problem with transformation medium; (c) part (b)

in close proximity of the ship. [ Q,, : transformation medium, Qg : free-

space, Q,,, : perfectly matched layer, Q : discarded region] (Reprinted

from [39], Copyright 2013, with permission from IEEE)

illusion is created to simplify the Monte Carlo analysis. Each
time the surface changes, only the material parameters are
modified without changing the mesh.

Similar approaches were utilized for the analysis of
irregularities in waveguides having rough surfaces or
grooves on the surfaces in [40], and ridges in [41]. In this
paper, only the scattering problem from rough sea surfaces in
[39] is discussed. The readers are referred to [40] and [41]
for waveguide problems.

Without loss of generality, the technique is demonstrated
by considering the geometry in Fig. 9 involving objects on or
above the surface, illuminated by a plane wave. In the
proposed technique in Fig. 9(b), an equivalent problem is
designed by placing a transformation medium (Q,,) above
the surface. The region occupied between the boundary of
the rough surface and the inner boundary of the
transformation medium is discarded. Each point P inside

Q,, is mapped to P inside the transformed region

Q=QuQ,, by using the following coordinate
transformation T:Q,, — Q
r, T,
r>r=T(r)=1"—"(r-r,)+r, (27)
L "

The unit vector is chosen to be orthogonal to the surface
for each point within the transformation medium from the
ship (i.e., a= —ﬁ)_ if vertical axis is chosen to be the y-axis),
but it is tilted and emanating from the corner point P, for
each point in close proximity of the ship (see Fig. 9(c)). Note
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a
Fig. 10. Ray optics interpretation of the field behavior in the original and
equivalent problems. (Dashed and solid rays correspond to original and
equivalent problems, respectively.)

that, in regions other than those shown Fig. 9(c), the
transformation reduces to the following simple form because
of the special form of the unit vector, as follows:

y=K(y=y)+..
.= l/
thickness of the transformation medium. Here, y,, y, and

X=x, =2z, (28)

where K=

Yo=Yl and d, =]y, —y| is the

y, are the y-coordinates of the corresponding points.

The main objective of the coordinate transformation is to
confine the fields to the transformation medium. To better
understand the field behavior within the transformation
medium, ray optics is used as shown in Fig. 10 for an
arbitrarily rough surface. The dashed and solid curves show
the rays in the original problem and the equivalent problem
with the transformation medium, respectively. In the
equivalent problem, the transformation forces the fields
inside the transformation medium to imitate the fields within
the region between the rough surface and the uppermost
boundary of the medium. The fields outside the
transformation medium are identical in both original and
equivalent problems.

The performance of the proposed technique is validated
through some numerical simulations. Two types of analyses
are performed:

(i) Solution of a deterministic problem—without
randomness—for a single surface realization,

(ii) Solution of a stochastic problem by Monte Carlo
simulations. Monte Carlo method determines the average
behavior of a stochastic system by repeated sampling. It is
based on following main steps: (i) a set of inputs (a set of
surfaces in our case) is randomly generated from a given
probability distribution; (ii) deterministic computations
(repeated solutions via proposed approach in our case) are
performed for each input; and (iii) the results (RCS, field or
error in our case) are aggregated to statistically characterize
the problem on the average sense. The data generated from
repeated computations can be represented as approximate
probability distributions (or histograms), or some statistical
parameters (such as mean, variance, etc.).

In the simulations below, rough surfaces are generated by
using the Gaussian random process based on the Pierson-
Moskowitz spectrum. The wind speed is u = 15 m/s, the
element size is A/30 (A = 1 m), the thickness of the
transformation medium is 22, and the dielectric constant of

the ogive objectis &€ =3. Electrical parameters of the sea
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Fig. 11: Validation of the technique with comparison to the conventional

FEM by considering a single surface realization: (top) Scattered and total

field maps for original and equivalent problems; (bottom) bistatic RCS

profiles. (Reprinted from [39], Copyright 2013, with permission from IEEE)
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surface are set to & =80 and ©¢=48S/m. The

computational domain is illuminated by a plane wave whose
angle of incidence is ¢”’" =45°, which is measured with

respect to the x-axis in Cartesian coordinates. The plane
wave is numerically tapered by the PML layer to avoid edge
effects in the finite-sized domain.

First, we consider the deterministic problem assuming a
single surface realization, whose results are shown in Fig. 11.
The mean square percentage difference (Err) between the
fields of original and equivalent problems is computed as
0.3%. Next, we perform Monte Carlo simulations by
generating 100 surfaces. In this manner, a family of bistatic
RCS values is obtained, for observation angles ranging from
0 to 180°, and represented as a random process. The results
are shown in Fig. 12. In this figure, part (a) shows the mean
RCS (sometimes called coherent component) which
represents the RCS values resulting from the large scale
features of the geometry because of the averaging (or
smoothing) operation. Part (b) illustrates the standard
deviation (STD) of the RCS values (also called incoherent
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TABLE IV
COMPUTATIONAL ANALYSIS OF THE ROUGH SURFACE SCATTERING PROBLEM
(REPRINTED FROM [39], COPYRIGHT 2013, WITH PERMISSION FROM IEEE)

Original Equivalent

Problem Problem
Time for mesh generation phase 363 10.2
(100 realizations) (min) o (only once)
Time for FEM matrix formation and 287 230
solution phases (100 realizations) (min) N
Total time (100 realizations) (min) 650 240.2
Matrix size 332,992 303,951
Matrix condition number 4.13x10° 3.41x10°

40 ¢ - Original Problem (flat surface) : : T
===auees Equivalent Problem (flat surface)
R Specular
30| — Original Problem (rough surface) ﬂ direction i
Equivalent Problem (rough surface) H

Mean RCS (dBA)
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Fig. 12. [Monte Carlo] Validation of the technique with comparison to the
conventional FEM by considering 100 surface realizations: (a) Ensemble
mean of bistatic RCS; (b) ensemble standard deviation (STD) of bistatic
RCS; (c) histograms and Weibull distributions of the RCS values at the
direction of specular reflection. (Reprinted from [39], Copyright 2013, with
permission from IEEE)

component), which shows the amount of variation or
fluctuation in the values. Finally, part (c) plots the
histograms and the Weibull probability density function of
the RCS wvalues at the specular reflection direction.
Moreover, the statistical parameters of the mean square
percentage difference comparing the original and equivalent
problems are computed as follows: mean = 0.4%, STD =
0.2%, max = 1.0%, min = 0.1%. Finally, the computational
analysis is tabulated in Table IV.
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VI. DISCUSSIONS

This section aims to address some issues related to
different aspects of the approaches described in the sections
above. While some of these issues are addressed, other
questions are left open to encourage future studies and to
help generate possible discussions on this paper following its
publication.

Issue 1: The transformation medium designed for an
electrically-small object acts like a “magnifier”. The problem
involving an electrically-small object is indeed a low-
frequency problem, and the transformation medium turns the
low-frequency problem into a relatively high-frequency
problem so that uniform mesh scheme is used. Looking at
this problem from a different viewpoint, the proposed
approach can be employed for radar cross-section (RCS)
reduction such that a ‘large’ object which has a relatively
large RCS values can be transformed into a ‘smaller’ object
with reduced RCS. In other words, the transformation
medium coated on the surface of an object to achieve virtual
shaping can be used as an alternative to physical shaping or
radar absorbing materials for RCS reduction. The overall
action of the transformation medium makes sense, but does
this medium introduce an additional physical insight in terms
of the wave behavior within the medium? In fact, since the
geometry is modified even in the virtual sense, the phase
velocity of the electromagnetic wave should vary over a
wide range to mimic the desired wave behavior of the
original problem. For example, in the case where the object
shrinks down to a smaller size, the wave inside the medium
must travel faster along the boundary of the object in order to
be in-phase at the shadow region of the object and to create
the same fields in the outside medium as those of the smaller
object. If this happens, then the phase velocity exceeds the
velocity of light in free-space, which is the speed limit of the
universe. For a non-dispersive medium, since the group
velocity is equal to the phase velocity, the transformation
medium must necessarily be dispersive and operate at a
single frequency in order not to violate the laws of physics.
This is especially important in the time domain modeling of
the medium due to causality and stability issues. The
transformation medium with relative permittivity and
permeability values smaller than unity can operate over very
narrow bandwidths, and a special treatment is needed for
broadband operation. One possible solution for broader
bandwidth might be to model the transformation medium as
several concentric non-dispersive layers made up with
natural material parameters having relative permittivity and
permeability values not smaller than unity. This problem will
be investigated by the authors in the future. But, in the
meantime, we may pose the question: “Without changing the
material properties, is it possible to modify the stability
conditions in the FDTD method to achieve a broadband
medium?”

Issue 2: Yet another important question: “Is there any
computational complexity in implementing the coordinate
transformation and incorporating the anisotropic material
tensors to the numerical method under consideration?”

The computational effort in realizing the coordinate
transformation in a finite element code imposes almost
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negligible burden on the processing power of the computer,
compared to some other phases of the code, such as usual
matrix construction and solution. This is because the
transformed coordinates can be determined in the
preprocessing phase, i.e., before the matrix construction
phase, by utilizing some simple search algorithms to find the
points on the boundaries. After determining the transformed
coordinates, the Jacobian tensor and the material parameters
within the medium can easily be obtained by using the
simple expressions in (15) and (16). In the matrix formation
phase, the straightforward finite element formulation of (23)
is considered in the transformation medium. In the FDTD
modeling, the transformed points and the material tensors are
determined, before the start of the simulation by using the
analytical expressions given in (7)-(11). Although the
formulation of the FDTD in an anisotropic medium (given in
[37]) requires more effort in deriving the equations, it only
increases the computational burden of the simulation process
just slightly.

Issue 3: Next we ask a question, related to the domain
compression approach: “In the domain compression
approach where a larger domain is compressed into a
smaller domain, does the transformation medium require
finer grid to handle field variations?”

The principles of ray-optics enable us to conclude that the
medium does not necessarily have to be denser. In [35], we
explained this issue by considering the L-shaped geometry in
Fig. 1. Let us assume that the object is illuminated by an
arbitrary angle as shown in Fig. 13. In Fig. 13(a), the first-
and second-order reflected rays from the lower and upper
faces, respectively, are shown in the original problem. In the
equivalent problem in Fig. 13(b), the domain is compressed
in the direction of the unit vector which is in the same
direction as that of the incident field. The first- and second-
order reflected rays after the transformation are shown by 1’
and 2', respectively. The length of the first ray will always be
longer than its original length (4. > 4) because of the
compression, irrespective of the point where the incident
wave hits the object. Hence, the ray must travel faster to
traverse over this longer path. The wavelength increases for
fixed frequency and therefore, the spatial discretization (or
element size) in the original problem is sufficient. It even
provides better resolution in the equivalent problem to
handle field variations over this longer path. Next, let us
examine the second-order reflected ray 2'. The length of the
2" ray gets shorter after the transformation, and a finer
discretization is required over this path due to shorter
wavelength. Therefore, the only source of error will be the
rough discretization over 2'. However, since the effect and
the strength of the second-order ray is less than of the first-
order ray, the error levels remain acceptable. The worst case
for which the length of the 2’ ray is the shortest occurs if the
direction of 2’ is in the same direction as the unit vector
denoting the direction of compression, as shown in Fig.
13(b). If the direction of the unit vector is modified as shown
in Fig. 13(c), then the length of the second order ray
increases (4« > 4), and the error due to discretization
decreases. In principle, if there is wave propagation in the
direction of compression, it introduces errors based on the
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Fig. 13. Ray-optics interpretation of domain compression technique: (a)
Rays in original problem of L-shaped object; (b) rays in the transformation
medium if the directions of compression and propagation are the same; (c)
rays in the medium if the directions of compression and propagation are
different; (d) rays in original problem of wide-angle object; (e) rays in the
medium of wide-angle object; (f) rays in original problem of narrow-angle
object; (g) rays in the medium of narrow-angle object. (Reprinted from [35],
Copyright 2013, with permission from Elsevier)

compression rate because of the decrease in the length of
propagation. Otherwise, the discretization error will not
occur. Hence, by adjusting the direction of compression
based on the physics of the problem at hand, reliable results
can be achieved and the number of unknowns can be
decreased without using finer meshes. Note that due to non-
convexity, the waves propagating in the direction of
compression become the second- or higher-order waves,
whose error contributions are small. Similar analyses are
shown for a wide-angle object in Figs.13(d) and 13(e), and a
narrow-angle object in Figs. 13(f) and 13(g). In Fig. 13(e),
the only source of error is the second-order ray; however, the
worst-case for which the compression direction is in the
direction of propagation is never experienced. Similarly, in
Fig. 13(g), only the third-order ray causes error. Note that the
incident ray is not considered because the scattered field
formulation is used. These comments are applicable to the
diffracted fields as well.

Issue 4: The next question we ask is: “Does
transformation electromagnetics cause mesh deformations?”
This indeed depends on how the coordinate transformation is
defined. The unit vector and the thickness of the
transformation medium affect the spatial distribution of the
transformed coordinates. In principle, the following
condition should be kept in mind: Two closely-located points

7 and 7 in the medium Q,, are mapped to two closely-

located points 7 and 7 in Q. Mathematically, given £ >0
there d>0 (0 depends oné&) such that

"T(T’)—T(?* )" < £ whenever ||? -7 || <& . In other words,

exists

the deviation in relative positions for two closely-located
points after the coordinate transformation should not be
large. The reason is twofold: (i) spatial variations in the
entries of the material parameters corresponding to
contiguous points should not be large; (ii) qualities of
elements in the mesh should not be distorted. Since any mesh
distortion leads to an increase in the condition number, we
have computed the condition numbers in our simulations and
have concluded that if the coordinate transformation is
defined properly by considering the continuity condition
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mentioned above, the order of the condition number remains
almost the same (see Tables II and IV). The mesh structure
can also be visualized by plotting the virtual mesh after the
transformation, similar to Fig. 5(c). Furthermore, as the
thickness of the transformation medium increases, the error
values tend to decrease because of the decrease in the spatial
variations of the material parameters. Although the error
values tend to decrease for thicker layers, we have observed
in the simulations that even a thin medium layer provides
reliable results.

Issue 5: Our next question is: “What do we gain by using
Transformation EM in Monte Carlo simulations?” In Monte
Carlo simulation of stochastic problems, such as rough
surface scattering problems, repeated solutions are required
to get a family of data for different rough surfaces. In other
words, after producing a set of surface geometries, a mesh
must be generated with respect to each of these geometries,
and a matrix system must be formed and solved anew for
each mesh. This obviously increases the computation time
and memory, given the large number of realizations. The
main advantage of the transformation electromagnetics is
that it allows us to create a single mesh, which is simply
constructed for a smooth surface; hence, it avoids the need
for repeated mesh generations, and saves a large amount of
computation time. In addition, the matrix is also generated
only once, and only the part of the matrix corresponding to
the transformation medium is modified during the
simulations. It is useful to note that in the conventional
approach, the part of the mesh above the rough surface,
which does not change for different realizations, can be
treated separately, and the mesh and matrix associated with
this region need to be created only once. However, it should
be realized that the mesh just above the surface needs to be
generated for each different geometry and to be incorporated
into the global mesh. Since the number of nodes and
elements, as well as their numbering schemes change in each
mesh generation, a computational effort is needed to
combine the meshes and the matrices properly by using a
unique numbering scheme at each time. Therefore, in any
case, the transformation medium provides considerable
advantages over the conventional approach in terms of both
simplicity and computation time. Evidence of this saving
may be found in Table I'V.
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In this paper, Ozgun and her colleague take the TO to a different direction than the conventional one, and apply it to solve
Computational EM problems involving complex geometries in an interesting and non-traditional way. They show how a
problem that involves a complex geometrical shape can be transformed into a simpler one, in order to gain some advantage
over conventional techniques in terms of simplified mesh generation in FEM, for instance.
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